Three Revolutions in Urban Transportation:
How to achieve the full potential of vehicle electrification, automation and shared mobility in urban transportation systems around the world by 2050

Lew Fulton, Co-Director
Sustainable Transportation Energy Pathways Program (STEPS)
UC Davis

Wocomoco
5th WORLD COLLABORATIVE MOBILITY CONGRESS PROGRAMME
20 OCTOBER 2017, EMBASSY OF THE NETHERLANDS BERLIN & ESMT BERLIN
Passenger Transport Revolutions

1. Streetcars (~1890)
2. Automobiles (~1910)
3. Airplanes (~1930)
4. Limited-access highways (1930s....1956)

2010+
1. Vehicle electrification
 – low carbon vehicles and fuels
2. Real-time, shared mobility
 – less vehicle use
3. Vehicle automation (2025?)
 – Uncertain impacts
Three Revolutions in Urban TRANSPORTATION

How to achieve the full potential of vehicle electrification, automation and shared mobility in urban transportation systems around the world by 2050

Lew Fulton, UC Davis
Jacob Mason, ITDP
Dominique Meroux, UC Davis

May 2017

Research supported by:
ClimateWorks Foundation, William and Flora Hewlett Foundation, Barr Foundation

Research undertaken by UC Davis and ITDP, part 3 of a series

Global scenario study to 2050 focused on potential 3 Revs impacts on CO2, energy use, costs

Study supported by UC Davis STEPS Consortium and by Climate Works, Hewlett Foundation, Barr Foundation

https://steps.ucdavis.edu/three-revolutions-landing-page/
Have EVs arrived?
During 2017, The number of PEVs worldwide will likely go over 3 million, with over 1 million in sales this year.
Norway & Netherlands achieved high PEV market shares in 2016, most other national markets around 1-2%.

- Norway 30% in 2016
- Hong Kong 5%
- California 3%
- Switzerland 2%
- Sweden 2.6%
- San Jose 10%
- Shanghai 15%

Norway & Netherlands achieved high PEV market shares in 2016, most other national markets around 1-2%.
Car of the future?

Accelerating the Next Revolution
In Roadway Safety

September 2016
Or this?

-autonomous RVing-
Electrification + Automation: likely, but not definitely, together

All autonomous vehicles in development feature some form of electrification

<table>
<thead>
<tr>
<th>Parent Company</th>
<th>Make</th>
<th>Model</th>
<th>Powertrain</th>
<th>Production Goal</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nissan</td>
<td>Nissan</td>
<td>Leaf</td>
<td>Electric</td>
<td>2020</td>
<td></td>
</tr>
<tr>
<td>GM</td>
<td>Chevrolet</td>
<td>Bolt</td>
<td>Electric</td>
<td></td>
<td>Testing 40 vehicles in SF and Scottsdale</td>
</tr>
<tr>
<td>FCA</td>
<td>Chrysler</td>
<td>Pacifica</td>
<td>Hybrid</td>
<td></td>
<td>Testing 100 vehicles with Google</td>
</tr>
<tr>
<td>Ford</td>
<td>Ford</td>
<td>Fusion</td>
<td>Hybrid</td>
<td>2021</td>
<td></td>
</tr>
<tr>
<td>Volvo</td>
<td>Volvo</td>
<td>XC90</td>
<td>Hybrid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uber</td>
<td>Ford</td>
<td>Fusion Energi</td>
<td>PHEV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uber</td>
<td>Volvo</td>
<td>XC90</td>
<td>Hybrid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daimler</td>
<td>Mercedes-Benz</td>
<td>F015 Luxury in Motion</td>
<td>Hydrogen Fuel Cell Plug-In Hybrid</td>
<td>Research Vehicle</td>
<td></td>
</tr>
</tbody>
</table>
AV costs dropping quickly

Cost of LIDAR used on the Google car was $75 – 85,000, and by early 2016, Velodyne began selling LIDAR for $500 per unit to Ford.
Ride sharing is exploding around the world...

...but is it really ride sharing?
The Evolution of Shared Mobility Services

<table>
<thead>
<tr>
<th>Carsharing 1.0 Station Based</th>
<th>Early model of carsharing where vehicles are picked up and returned to the same location; typically through an hourly rental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carsharing 2.0 One-to-Many</td>
<td>Second generation of carsharing where vehicles can be picked up and dropped off in different locations (possibly by zone vs. designated parking spots); typically charged by minute</td>
</tr>
<tr>
<td>Carsharing 3.0 P2P</td>
<td>Peer-to-peer sharing where individuals can rent out their personal vehicles to others when not in use</td>
</tr>
<tr>
<td>Ride-hailing</td>
<td>Platform where individuals can hail and pay for a ride from a professional or part-time driver through an app</td>
</tr>
<tr>
<td>Shared Ride-hailing</td>
<td>Extension of ride-hailing where individuals can be matched in real-time to share rides with others going on a similar route</td>
</tr>
<tr>
<td>Microtransit</td>
<td>App and technology-enabled shuttle services, typically in a van-size vehicle; some with dynamic routing, others with semi-fixed routes</td>
</tr>
</tbody>
</table>

Ride-hailing in the U.S. currently substitutes for more sustainable modes than for driving

- 49% to 61% of ride-hailing trips in major U.S. metro areas would have not been made at all, or by walking, biking, or transit.
- Ride-hailing attracts Americans away from bus services (a 6% reduction) and light rail services (a 3% reduction).
- Ride-hailing serves as a complementary mode for commuter rail services (a 3% net increase in use).
- Directionally, we conclude that ride-hailing is currently likely to contribute to growth in vehicle miles traveled (VMT).

This can go in very different directions…

“Heaven” Scenario

• Ride sharing, multimodal (transit/NMT) ecosystem
• More compact, livable cities
• “Right-sizing” of vehicles
• Reduction in traffic/travel times
• Fuel efficiency improvements/ electrification/lower CO2

“Hell” Scenario

• More single-occupant (and zero occupant) vehicles
• More sprawl/car-dependence
• Bigger vehicles
• Longer trips/ time spent traveling/ increased traffic congestion
• Higher energy use/CO2
Some questions and conflicts

• **Automation: lower per-trip costs, lower “time cost” for being in vehicles**
 – Just how much cheaper will it be?
 – Private automated vehicles = longer trips?
 – Empty running (zero passengers) of vehicles
 – Resulting relative costs of private vehicles, shared mobility, transit?

• **Electrification goes with automation – does it really?**
 – Can get the job done with upgraded electrical system (such as hybrids)
 – But electric running will be much cheaper – and durable?

• **Ride hailing: cost savings v. convenience and risk**
 – Complementary or at conflict with public transit use?
 – Will lower costs reduce the incentive to ride share?
Part 2: our scenarios...we want to explore these interactions and different possible futures
Rough guide to the three scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Automation</th>
<th>Electrification</th>
<th>Shared Vehicles</th>
<th>Urban Planning/ Pricing/TDM Policies</th>
<th>Aligned with 1.5 Degree Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business as usual, Limited Intervention</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>No</td>
</tr>
<tr>
<td>1R Automation only</td>
<td>HIGH</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>No</td>
</tr>
<tr>
<td>2R With high Electrification</td>
<td>HIGH</td>
<td>HIGH</td>
<td>Low</td>
<td>Low</td>
<td>Maybe</td>
</tr>
<tr>
<td>3R With high shared mobility, transit, walking/cycling</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>YES</td>
</tr>
</tbody>
</table>
Passenger kilometers of travel by scenario/mode World

- Automated vehicle travel not significant by 2030 in any country/scenario, but dominates in 2050 in most of the world. Results in much higher travel in 2R.
- In 3R private LDVs reach very low levels; nearly 50% of travel in 2050 is in transit/non-LDV modes.
Automated vehicle travel not significant by 2030 in any scenario, but dominates in 2050. Results in much higher travel in 2R.

Europe remains fairly car dominated to 2050 - modal mix changes in 3R, but mostly due to TNCs. Significant minibus travel. Non-car travel reaches 35% in 3R.
OECD–Europe LDV travel (VKm) by scenario

- 2R vehicle travel rises sharply after 2030 due to lower travel costs from automated vehicles
- 3R vehicle travel flat despite declining vehicle stock, given higher travel per vehicle of public vehicles
OECD–Europe LDV stock evolution by scenario

- **2R** stocks nearly completely autonomous by 2050
- **3R** stocks strongly decline after 2030, due to lower passenger travel levels, intensive vehicle use and higher load factors
Energy use by scenario, mode

- Far lower energy use in 2R due to EVs, and in 3R due to low LDV mode shares
Urban passenger transport CO2 by scenario, vehicle type, world

4DS electricity shown; in 2DS, CO2 from electricity drops to near zero in 2050

Global CO2 reduction in a 2DS electricity world, 2R/3R v. BAU, in 2050 and cumulative

<table>
<thead>
<tr>
<th>Scenario</th>
<th>2050</th>
<th>2015-2050 cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>2R v BAU</td>
<td>82%</td>
<td>37%</td>
</tr>
<tr>
<td>3R v BAU</td>
<td>93%</td>
<td>53%</td>
</tr>
</tbody>
</table>

CO2 Emissions - World

- **Electric vehicles**
- **ICE vehicles**
Costs start to deviate across scenario after 2030, 3R 40% cheaper in 2050

- The combination of far fewer vehicles, lower travel/fuel levels, lower infrastructure requirements (roads/parking) makes 3R far cheaper.
- 2R more expensive than BAU due to higher cost of AV/EVs and greater travel
Supportive Policies – critical to success of the scenarios

- **3R Scenario (Automation + Electrification + Sharing):**
 - Compact Urban Development policies
 - Efficient parking policies
 - Heavy investment in transit/walking/cycling
 - VKT fees (incl. congestion & emission factors):
Shared Mobility Principles for Livable Cities

The future of mobility in cities is multimodal and integrated. When vehicles are used, they will be right-sized, shared, and zero emission. These principles guide urban decision-makers and stakeholders toward the best outcomes for all.

1. Plan cities and mobility together
2. Focus on moving people, not cars
3. Encourage efficient use of space and assets
4. Engage stakeholders in decision making
5. Design for equitable access
6. Transition towards zero emissions
7. Seek fair user fees
8. Deliver public benefits via open data
9. Promote integration and seamless connectivity
10. Automated vehicles must be shared

*Shared vehicles include all those used for hire to transport people (mass transit, private shuttles, buses, taxis, auto-rickshaws, car and bike-sharing and urban delivery vehicles.

SharedMobilityPrinciples.org
#LiveableCities
#10principles
10 Principles
https://www.sharedmobilityprinciples.org/

1. We plan our cities and their mobility together.
2. We prioritize people over vehicles.
3. We support the shared and efficient use of vehicles, lanes, curbs, and land.
4. We engage with stakeholders.
5. We promote equity.
6. We lead the transition towards a zero-emission future and renewable energy.
7. We support fair user fees across all modes.
8. We aim for public benefits via open data.
9. We work towards integration and seamless connectivity.
10. We support that autonomous vehicles (AVs) in dense urban areas should be operated only in shared fleets.
Three additional “Lew” Principles

1. We must pay close attention to the relative cost of vehicles/modes ($$, time, safety convenience, etc)
2. We must enable pricing as a true policy option, and have a social contract on how we spend those revenues
3. We must somehow convince consumers that they (and society) will be better off if they don’t actually own driverless cars, and maybe don’t own any car