

E-Car-Sharing: Modeling, Planning, Incentives Wocomoco 2017, Berlin

Bin Hu

AIT Austrian Institute of Technology Center for Mobility Systems Dynamic Transportation Systems

Topic

- Methods and strategies for optimized planning and operating e-car sharing systems
- Strategic level
 - recharging stations
 - fleet configuration
- Tactical level
 - incentives
- Operational level
 - relocation and recharging

Viennese Use Case

- Input
 - Business area + road network
 - Recharging stations can be built on certain street junctions
 - Investment budget (for cars + stations)
 - Demand prediction for user trips
- Goal

Maximize the expected profit by

- Balancing the number of cars and stations
- Planning the locations for recharging stations
- Choosing the right incentives

Incentives and User Acceptance

- Questionnaire
 - Income
 - Typical car-sharing usage behavior
 - Goodies/incentives that are appealing
- Computation of "shadow wages" value of time

Results

- ~39% of the users are not likely to accept goodies at all for taking detours (shadow wage of 66 EUR/h)
- ~61% of the users will potentially accept goodies for taking detours (shadow wage of 28 EUR/h)
- Amount of incentive that is reasonable, e.g.:
 - 10 min for charging a car
 - max 25% reduction for taking a stranded car

Online questionnaire by **tbu** RESEARCH

Computational Experiments

- Scenario settings
 - Investment budget of 500k 1M Euro
 - Different business area sizes
 - Vehicle fleet: Smart ED with average 50% SOC
 - Users are willing to walk 3 min to a car / to their destination
 - Demand model based on Taxi data
- Solution algorithm
 - Variable Neighborhood Search
 - Solution evaluation with Monte Carlo Sampling
 - Simulation for one week of operation
 - Maximize the expected profit

Results

Recharging stations location

Cars after one week, with incentives SOC: full – empty

Cars after one week, without incentives SOC: full – empty

Car Statistics

- Average usage of one day
 - Number of trips: 7
 - Total travel time: 53 min
 - Total charging time: 9 min
 - Total waiting time: 23 h
- Average SOC
 - Begin of scenario: 50%
 - End of scenario: 45%
 - End of scenario (without incentives): 1%

Accepted Trips Statistics

- Unfulfilled requests
- Nearest car
- Fully charged car from a station
- Car with incentive

- Unfulfilled requests
- Desired destination
- Charging station
- Other incentivized location

Profit, Number of Trips, and Paid Incentives

Conclusions

- Method for modeling, optimizing and simulating free-floating e-car sharing systems
- Each area size requires a **minimum budget** to make it work
 - **Network effect** → necessary density of cars
 - Charging stations → necessary amount of chargers
- Applying the right incentives is essential on operational level
 - Less staff personnel required for recharging
 - Less staff personnel required for rebalancing

THANK YOU!

Bin Hu Center for Mobility Systems Dynamic Transportation Systems bin.hu@ait.ac.at

/////